

David Israel, James Rash

- NASA/GSFC

Keith Hogie

Ed Criscuolo

Ron Parise

- Computer Sciences
Corp

Overview

- The CANDOS Mission
- Space Components
- Ground Components
- End-to-End Data Flows
- IP Experiments
- Results
- Summary

The CANDOS Mission

Communication And Navigation Demonstration On Shuttle (CANDOS)

- Hitchhiker payload on STS-107, January 16, 2003
- Part of the FREESTAR (Fast Reaction Experiments Enabling Science, Technology Applications, and Research) payload

Low Power Transceiver (LPT) space test

- LPT is a multi-channel, programmable transceiver
- Supports Space Network (SN), Ground Network (GN), and GPS modes
- Built on stackable PC104 form factor boards
- Initial flight test of transmitter, receiver, and GPS capabilities

Internet Protocol (IP) tests in space

- Test wide range of standard Internet protocols over SN and GN
- Primary test of Mobile IP protocol for space use
- Secondary tests of NTP, UDP, MDP, FTP, SCP, SSH, and IP operations

Ground station upgrades

 Initial test of issues for upgrading SN and GN stations to support HDLC framing and Internet protocols on space links

Space Components

- LPT Programmable Transceiver
 - 2 S-band transmitters
 - 12 S/L-band receivers (SN/GN, GPS)
- 4 Antennas high & low-gain transmit, low-gain receive, GPS
- 233 Mhz 686 processor running Red Hat Linux 6.1

PC104 dual sync serial interface between CPU and transceiver

RS-422 clock/data

LPT in STS-107 Bay

Ground Components

- Existing antennas, transmitters & receivers at White Sands Ground Terminal (WSGT), Second TDRSS Ground Terminal (STGT), Wallops, and Merritt Island Launch Area (MILA)
- RF equipment at stations connected to router serial ports
- Electrical interface adaptation and coding done with GRIDs
- Routers connected to NASA Closed IONET IP backbone
- Laptops and workstations in control center (Linux, MacOS, Win98)

Space-Ground - IP Interface for Existing RF Equipment

 Device similar to a commercial satellite modem was needed to connect custom NASA RF interfaces to commercial routers (electrical interface and coding functions needed)

Mobile Network Connectivity

End-to-End Data Flows

- Standard applications use UDP and TCP APIs to communicate between LPT and end user systems
- Standard operating systems process IP headers
- LPT network serial driver connects onboard IP stack with RS-422 synchronous serial interface
- Frame Relay/HDLC frames over RS-422 clock and data lines between serial interface and LPT transceiver
- RF signal processed at ground and bitstream (Frame Relay/HDLC) fed to router serial port
- Ground IP packets delivered over NASA Closed IONET
- Data formats and protocols to the spacecraft were identical to those from the spacecraft
- LPT looked like any addressable Internet node

End-to-End Data Flow

Data packets addressed directly to multiple ground destinations by onboard processor

Multiple ground systems address data directly to spacecraft, no need to specify ground station

LPT Software Architecture

- Data directed to proper processes using standard and user assigned port numbers
- Status information logged to syslog and other files for later retrieval
- Different data kept separate in files from end-to-end
- More automated file management needed for future missions

- TCP

Data Collection

Onboard LPT

- 10 sec. housekeeping status collected onboard and downlinked as real-time telemetry during communication contacts
- All information timestamped in SYSLOG facility or application logs (NTP, GPS, MIP, BlindCmd, RangeSafety, etc.)
- Manually compressed and moved log files to download directories

Network Monitoring

- PERL/SNMP program to monitor router interface traffic, data rates, error indicators, and MIP tunnel status
- Ethernet LAN analyzer to log all packets in/out of control center

Control Center

- Captured LPT housekeeping telemetry, displayed it, and forwarded UDP status packets to multiple systems with LabView graphical status displays
- Downloaded files collected and stored by pass for later analysis

IP Experiments

Experiment	UDP Protocols	TCP Protocols
Automated IP routing to current ground station antenna	Mobile IP- Automatically setup IP routing tunnels to multiple stations/antennas (SN and GN)	
Real-time Telemetry Delivery	UDP status packets - to monitor status of LPT over two-way and one-way links addressed to multiple destination addresses	
Onboard Clock Synchronization	Network Time Protocol (NTP) - synchronize and maintain onboard clock referenced to ground time servers	
Commanding	UDP Blind Commanding - Send UDP command packets to LPT over one-way uplink without Mobile IP or a two-way link	Secure Shell (SSH) & Telnet - login and control experiments from multiple locations
Reliable File Transfer	Multicast Dissemination Protocol (MDP) - perform reliable file transfer over both two-way and one-way communication links	Secure Copy (SCP) and File Transfer Protocol (FTP) - reliably transfer files to and from LPT during SN and GN two-way contacts

Security

- Security & Risk Analysis worked out with NASA network security group
- All data flows supported over the NASA Closed IP network that supports all other NASA missions
- All equipment configured and run through security scans before connecting to network
- Mobile IP used authentication between MN-HA, and FA-HA
- Encrypted login and data transfers using SSH and SCP
- One-way UDP paths out through firewall to Internet, no incoming Internet traffic allowed

Overall Protocol Results

HDLC framing performed well

- Variable length frames with CRC-16 error check
- Operates over uncoded & convolutional coded links, various rates
- ISO standard supported by standard router serial interfaces
- Works over one-way links
- Used over space links for over 20 years

Multi-protocol Encapsulation over Frame Relay

- RFC 2437 IETF standard
- Supported by standard routers and Frame Relay equipment
- Works over one-way links
- Serial line analyzers and protocol decodes available

UDP/IP packets well suited for space use

- Standard protocols supported by all routers and computers
- No connection setup, each packet is self identifying and routable
- Work over one-way links
- Easy to pass out through one-way firewall paths
- Worked for one-way blind commanding and status packets

Overall Protocol Results (cont.)

Mobile IP performed very well (~50 ms setup + RTT delay)

- Mobile IP registration set up tunnel as soon as two-way RF link was established (routers advertising every ~12 sec)
- Mobile IP only required three packets to set up tunnel on marginal links (advertisement up, registration request down, reg. ACK up)

MDP file transfer protocol used extensively

- Supported transfers over one-way and two-way links
- Allowed starting file downlinks before uplink was fully established
- Independent of link bandwidth asymmetry and propagation delay

NTP functioned but needs more work for high precision

- NTP did maintain the processor clock and provided accurate time stamps for all system logs and telemetry samples
- Didn't have good HW for precision timing, simple PC104 computer clock, no thermal control, no 1 PPS source,
- No independent onboard time reference to measure against

SSH and SCP used successfully

Required two-way link

UDP Telemetry Packets

UDP packet uses in space communication

- Each packet has a full network source & destination address as well as
 UDP port number information to further categorize and route data packets
- UDP unaffected by link delays and data rates
- Functions properly without needing Mobile IP or two-way link
- Current NASA data is carried around the ground in with CCSDS/4800BB/TDM in UDP packets

LPT real-time telemetry status packets

- CANDOS used simple tab-delimited ASCII strings to send real-time status data to specific ports on different systems for different types of data
- Telemetry packet sizes variable from ~ 425-475 bytes depending on the numerical values in them
- UDP packets delivered to open Internet via one-way only path through NASA firewall

UDP flexibility

- Different telemetry packets delivered to various destinations based on onboard addressing decisions.
- Easily built status display programs using PERL, LabView, TREK

Mobile IP

- Downlink data is routed normally
- Need to automatically determine which ground station to send commands through (same problem for cars, PDAs, laptops)
- Mobile device registration with ground agents supports automatic uplink routing configuration

Robust protocol worked under non-optimal links, only needed to get 3
packets across the RF link to set up tunnel

TDRSS Mobile IP Session

Mobile IP Performance

13:25:11.4 13:25:11.5 13:25:11.6 13:25:11.7 13:25:11.8 13:25:11.9 13:25:12.0 13:25:12.1 13:25:12.2 13:25:12.3 13:25:12.4 13:25:12.5

Network Time Protocol

NTP During Jan. 24, 2003

Commanding

Commanding using Linux shell scripts

- Shell scripts very useful for lots of last minute updates and fixes, onboard automation
- Demonstrated using "cron" onboard to to execute scripts to perform some traditional time-tagged commanding

UDP

- Blind commanding over manual tunnel and automatic MIP tunnel
- LPT process listening on port, received packet containing name of Bash script to execute and any parameters to pass to script

TCP

- Secure Shell (SSH) login secure, encrypted login from multiple locations, some sessions with multiple, simultaneous access
- Interactive onboard flight system maintenance
- SCP uploads of scripts, and other configuration information (similar to table load and stored command uploads)
- Telnet used across very slow HitchHiker 1200 baud access link since it had less overhead and was on a dedicated link

File Transfers

Data compression

- Some files were compressed with gzip (some 10 to 1 compression)
- Others sent uncompressed if time and bandwidth available
- File transfer applications unaware of compression, they moved files

UDP File Transfers

- MDP over one-way and two-way links, automated hot-directory
- MDP across multiple ground stations with MIP handovers

TCP File Transfers

- Uploaded new executables, images, data, firmware
- FTP used for special cases with limited bandwidth links
- SCP sessions across multiple ground stations with MIP handovers
- SCP over two-way links with multiple locations- control center,
 MSFC, OMNI lab (remote users didn't know what the path was)
- MSFC picked up "putty", public domain SCP software, the day before they downloaded files from the LPT to MSFC

Multicast Dissemination Protocol

- UDP based, reliable file transfer protocol developed over 5 years ago at Naval Research Lab
 - UDP protocol avoids TCP problems with delay and intermittent links and lets application deal with to space link delay and intermittent connectivity issues
 - Multicast protocols developed to primarily send data to thousands of receivers and minimize responses using primarily NACKs and a final ACK
- On CANDOS MDP was also used over TDRSS MA Returnonly links to deliver data with final NACKs, retransmissions, and ACKs during two-way contact time
- Work continuing as NACK Oriented Reliable Multicast (NORM) in IETF Reliable Multicast Transport Working Group

http://www.ietf.org/html.charters/rmt-charter.html

http://rmt.motlabs.com/

http://proteonforge.nrl.navy.mil/

MDP File Transfer Analysis

Anomalies

Software issues

- MosquitoNet MIP timeout handling software was not correct and long RTT with TDZ resulted in excess reregistrations
- MDP throttle rate slow to change for low rates (fix coming)

Operational Issues

- Manual tunnel and automated tunnel conflict due to operator error
- Coordination of multiple simultaneous users to avoid bandwidth conflicts, access control,
- Onboard software configuration management is important with multiple user access
- When SCP has trouble use MDP, more forgiving when two-way starts fading
- Need to monitor/manage link utilization, excess UDP data can clog link and cause long delays, also triggered MIP excess reregistration

Operational Enhancements

- This mission focused on testing protocols and functionality and a long-term operational mission would need more automation
 - Ground network automated setup and monitoring of manual IP routing tunnel for use in blind commanding
 - Automated onboard file management coordinated with file transfers and RF system
 - Connections between MIP, MDP and onboard transmitter/receiver status for automated operation
 - Automated error handling, space and ground
 - Mobile IP software implementation with better handling of long RTT
- Possible onboard hardware/software enhancements
 - Full router to do prioritized traffic queuing, security, mobile routing,
 - 1 PPS signal from GPS to drive onboard NTP daemon
 - More stable clock

Summary

- Exceeded all mission objectives using standard IP protocols and applications for space communication and operations
- Successful demonstration of long-term, scalable concepts that can be used for command, control, and data collection for a wide range of future systems:
 - satellite science missions
 - balloon and aircraft systems
 - ground sensors
 - collaborative/ad hoc systems with large numbers of devices
- Internet protocols allowed us to quickly and easily try new applications and operation scenarios during the mission
- Standard, off-the-shelf products worked well and can work much better with a little design/configuration effort and real flight hardware

Jan. 16, 2003 15:39:00 GMT

http://ipinspace.gsfc.nasa.gov/CANDOS/